Asymptotic Preserving Implicit-Explicit Runge--Kutta Methods for Nonlinear Kinetic Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Validated Explicit and Implicit Runge-Kutta Methods∗†

A set of validated numerical integration methods based on explicit and implicit Runge-Kutta schemes is presented to solve, in a guaranteed way, initial value problems of ordinary differential equations. Runge-Kutta methods are well-known to have strong stability properties, which make them appealing to be the basis of validated numerical integration methods. A new approach to bound the local tr...

متن کامل

2-stage explicit total variation diminishing preserving runge-kutta methods

in this paper, we investigate the total variation diminishing property for a class of 2-stage explicit rung-kutta methods of order two (rk2) when applied to the numerical solution of special nonlinear initial value problems (ivps) for (odes). schemes preserving the essential physical property of diminishing total variation are of great importance in practice. such schemes are free of spurious o...

متن کامل

On a Class of Implicit-Explicit Runge-Kutta Schemes for Stiff Kinetic Equations Preserving the Navier-Stokes Limit

Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number ε goes to zero), their asymptotic behavior at the Navier-Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we ana...

متن کامل

Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit

We consider the development of Implicit-Explicit (IMEX) RungeKutta schemes for hyperbolic and kinetic equations in the diffusion limit. In such regime the system relaxes towards a parabolic diffusion equation and it is desirable to have a method that is able to capture the asymptotic behavior with an implicit treatment of limiting diffusive terms. To this goal we reformulate the problem by prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2013

ISSN: 0036-1429,1095-7170

DOI: 10.1137/12087606x